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There have been several attempts to develop a unified approach to the characte-
rization of solutions of L7 approximation problems, for example [5] and [21].
However, the approaches deveioped in these papers do not readily lend them-
selves to handling problems where the satisfaction of additional constraints,
such as interpolation or convexity conditions on the approximating function,
is required. On the other hand, there have been many papers which have in-
dividually dealt with the characterization of solutions of special approximation
problems with particular types of constraints, especially in the area of Chebyshev
approximation. Examples of such special problems include interpolation by the
approximating function [4], approximation by a monotone function [16], approxi-
mation from one side of the function to be approximated [14], [2, 6], approxima-
tion with a vector-valued norm [1, 11], simultancous approximation of a function
and its derivatives [18], and a serics of papers by Taylor: [23-25].

The purpose of this paper is to develop a unified approach to the characteriza-
tion of solutions of Chebyshev and L' approximation problems with the various
types ol constraints mentioned above. In addition, it is recognized that many
approximation problems with non-L” norms can easily be handled in the same
manner. In Section 1 the necessary results from optimization theory are outlined.
The remaining sections of the paper are devoted to applications of these results
to various approximation problems: Scction 2 to constrained lincar Chebyshev
approximation, Scction 3 to rational Chebyshev approximation, Section 4 to
Chebyshev approximation with a vector-valued norm, Section 5 to Chebyshev
approximation with nonstandard norms. and Section 6 to constrained L' approxi-
mation.

I. INTRODUCTION AND PRELIMINARIES

The approach to approximation problems taken in this paper was moti-
vated in part by the paper of Rice [20] in which a variety of approximation
problems are in essence formulated as mathematical programming problems
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doctoral dissertation [7] in the Computer Sciences Department at the University of
Wisconsin, This work was partiaily supported by the Mathematics Research Center at
the University of Wisconsin and by National Science Foundation Contract GJ 362.
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52 KENNETH R. GEHNER

with convex constraints. Let us consider the following general optimization
problem:

minimize F(x)
X

s.t.

(a) Gux,t) <0, forall1eT;,i==1,.,/,

(b) Hix,u) =0,foralluelU;,j = lL,..,m,

(0 xeX’, (P)
where:

(i) each T; and U; is a compact subset of a complete metric space;
(i) X" is an open set in R*;
(iif)  F(x) and each G x, t) are real-valued functions which have con-
tinuous partial derivatives with respect to x for each ¢ € T, , and each G,(x, ¢)
is continuous in f € T, for each x € X?; and

(iv) each H,(x, u) is a real-valued linear function in x for each ue U; ,
and is continuous in u € U; for each x € X°.

The necessary and sufficient conditions for solutions of problem (P) have been
previously developed [8], so the results are given here without proof.

THEOREM 1. Let U and V be compact sets in R*, W be an arbitrary set
in R*. Then either uz << 0, all ue U, vz << 0, allveV, wz =0, all we W,

has a solution z € R", or for any u® € U, there exists s << n and

(1) s vectors

we U, i=1,..,5,
vieV, i=s4+1,..5,
wie W, [=8, + l,..,5,

(ii) s < 1 real numbers A;, i = 0, 1,..., s such that
A =0 for i=0,1,..,58,,
with either A, > 0 or 5, 2= |, such that,
s S s
At 4+ Y Al - Y At Y Awt =0,
i=1 i=s,41 =811
but not both.

Using Theorem [ we can prove Theorem 2.

THEOREM 2. Let X be a local minimum of problem (P). Then there exist
integers sy and s with 0 < sy << s <\ n,
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(i) there are s, indices i, with 1 < i, << [ together with s, points
trel, ={teT, |Gy X,1)=0}
fork = 1,8y,
(i) there are s — s, indices j, with 1 < j, <X m together with s — 5,
points uF e U; fork = sy + 1,.... 5 and

(i) there are s + 1 real numbers Ay ,..., A, with Ay > 0 or s, == 1, and
A, > 0 for k = 1,..., s, , such that

(V) AVLER) + ¥ AVG(F 15+ Y AV, H, (% ub) = 0.
=1 1

L=sy+

In order to guarantee that the conditions of Theorem 2 are meaningful,
we must have A, > 0. The following constraint qualifications are sufficient
to prove this. As in [17], a function F(x) is defined to be pseudoconvex at x if
VE(X)(x — X) 2= 0 implies F(x) == F(X).

Constraint Qualification 1 (Modified Interior Point Condition)

The problem (P) satisfies the modified interior point condition if each Gy(x, t)
is pseudoconvex in x for all e T, for 7 == 1....,/ and there exists a point
& € R™ which satisfies

() Gi&t)<0,allteT; fori-=1,..,1 and
(iy Hi{&u) =0,allueU;forj = 1,.., m.

Constraint Qualification 2 (Modified Strict Inequality Condition)

The problem (P) satisfies the modified strict inequality condition at a given
point X, where Xe X ={xe X°|Gyx, 1) <0 VteT, for i = 1,...,/ and
Hyx,u) = 0Yue U, for j = 1,..., m}, if for any choice of integers s, and s
with 0 <C s, << s <C n, together with

(1) any choice of s, indices i, with 1 < i}, <{ 1 and s, points t* & TI-,_ =
{teT, |G;(x,1) =0} for k = 1,..., 5, and

(if) any choice of § — s, indices j, with 1 = j, < m and s — s, points
u*e U; fork = s, + 1...., 5, there is a vector y = ( 3y ,..., ¥,) € R" such that

(i) Y yVeGi (% 1%) <0  for k=1l,.5 and

q=1

(iv) ), ¥ Ve Hi (X, u¥) =0 for k=s,4+1,..,5.
a=1
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For most problems, it is usually easier to verify constraint qualification |
rather than constraint qualification 2. Moreover, under the assumption that
Gy(x, t) is differentiable in x, constraint qualification 1 implies constraint
qualification 2.

THOIREM 3. Let X be a local minimum of problem (P). If either constraint
qualification 1 or 2 is satisfied at X, then Ay > 0 is guaranteed in Theorem 2.

Under quite general convexity assumptions on the objective function and
constraints of problem (P), the necessary conditions of Theorem 3 are also
sufficient. Generalizing from [17], a real-valued function G(x, 1), where x € R",
te Tand T is an arbitrary set, is said to be quasiconvex at X if for each x such
that G(x,t) <X G(x,t) Vie T, then G((I — X + Ax, 1) = G(X, 1) holds
forall0 < A =X 1 foreach t € T. The function G(x, ¢) is said to be quasiconvex
on a set I'C R* if it is quasiconvex for each point x € I,

THEOREM 4. [In addition to the assumptions for problem (P), let F(x) be
pseudoconvex on X°, each G(x, t) be quasiconvex on X°, and assume that either
constraint qualification 1 or 2 holds at . Then X solves problem (P) if and only
if the conditions (i)~(iv) of Theorem 2 hold with A, > 0.

In the following sections of this paper we shall primarily be concerned with
linear approximating functions given by 3, x;¢,(t) for all t € T, where T is
a compact subset of a complete metric space, and where {¢,{ e, is a set of
continuous functions on 7. It shall also be assumed that f(z), the function
being approximated, is continuous on 7. Unless explicitly stated otherwise,
these assumptions hold for all the problems considered in the following
sections.

2. LINFAR CHEBYSHEV APPROXIMATION

The class of problems to be considered in this section includes Chebyshev
approximation problems where there are bounds on the approximation
S, x;b(t) and its derivatives either (i) at a certain finite number of points
in the interval of approximation, or (ii) over the entire interval of approxi-
mation. The general problem can be written as

minimize +
s.t. X, 7

Y xibdt) —f(t)y <7, allreT, (1)

=1

n
() —7<

©
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n

(i) W) <Y xP@) <u(t), allreT, for k=1,.,K,

del

n

(i) yu <Y @) <yw,  for k =Ko+ L., Ky, (1)

=1

(iv) Y x () =y, for k=K + L., K
=1

where the indices j, are prescribed nonnegative integers, for each k = 1,..., K,,
1(t) < w(t) YVt € T with both /,(¢) and u,(¢) being continuous functions on 7,
each 1* € T, and yq;, << yop for k = Ky, + 1,..., K .

Many problems previously considered in the approximation theory
literature are special cases of (1). For instance, first consider the case where
K, = 1, K = K, (no constraints (iii) and (iv)), and j; = 0, which results in
the problem:

minimize 7
s.t. *

() — 7<) xplt) — f(1) =<7, 2

i=1

(i) M) < Z X)) < u2),

all re T. If we let u(z) == M for all t € T, where M is a very large positive
number, and /(¢) == 0 for all ¢ € T, then we have the problem of nonnegative
approximation which has been studied by Jones and Karlovitz [12] under the
condition that {¢(¢)};., forms a Haar set on 7. If we let [(f) = —M Vie T,
where M is a large positive number, and u(z) = f (), then we have the problem
of one-sided approximation (approximation from below), which has been
studied by Kammerer [13]. Generalized versions of problem (2) have been
studied by Taylor and others in a series of papers: Taylor [23]-[25], Taylor
and Schumaker [22], and Taylor and Winter [26].

A second class of problems can be brought into consideration by setting
K = K, (no constraints (iii) and (iv) in (1)) and either (i) /,(¢) = 0 and
u(t) == M, or (i) [,{¢) == —M and u;(r) = 0 where M is a very large positive
number in either case. This leads to the problem

minimize =

X, T

s.t.

() —7<Y bl fO <7, @



56 KENNETH R. GEHNER

(i) ek[in</>(j")(Z)] <0, for k=1,.,K and e = =1,
2221

all t € T. Lorentz and Zeller [16] have considered a special case of (3), where
= [a,b], an interval of the real line, the set {¢(t)};, = {t"~ ne
(polynomlal approximation), and K <C n. Special cases of interest for (3) are

(i) K ==1andj, = l:approximation by a monotone function,
(1) K = 1 and j; == 2: approximation by a convex function.

The main result of this section is the following characterization theorem
for the original problem (1).

THEOREM 5. Assume that f(t) is not in the span of {bA1)},., and that either
constraint qualification 1 or 2 holds for problem (1). Then a point
(7*, X1 %, X, %) which is feasible for (1) yields an optimal approximation if
and only if the origin of R™ can be written as a convex combination of at most
n -+ 1 points from the union of the sets

/ (/’1([)
do(z )
(ﬁn(t)

where e(t) = 3. x;*{t) — f() and|ie | = max,er | e(?)],

T

C(l) ; elT*:'T %7

(jk)(t)

Xy, = % - ( o ) 2 'i*‘ﬁgjk)(’) e /k([)% )
pn) /| 1
(]7)([) \
S |
At
LSO N
Xy = : — \) \»*<f’§)k)(zl‘) = Yk s
i 5 «
ST _
Xy = g + ( (_E) ) Z Xi*(ﬁgjk)(ik) = Yor{ s
U /|5 |

PN \
X, — i( : )zxi*qb;fﬂak):w
G

with at least one point from the set X, included nontrivially.

B
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Proof. Since each of the constraints (i)~(iv) are linear in x and 7 and either
constraint qualification 1 or 2 holds, the characterization conditions of
Theorem 4 hold. Thus, there are integers s, , 81, 53, and s with 0 < 5, <C 85y <

< s < n together with #?eT for ¢g=1,.,8, 1 <kq\1{0 for
q:s0+l ,sl,KO—rl\k Klforq~sl+l S, and Ky + 1 <
ke < Kgforg =5, + 1,..., 8 such that

1 —1 0 ]
s . q 5. — 1) B,
/‘\0 0 . 2 /"\q (_]) :‘f)l(t ) . Z /\q ( 1) fﬁl (tq)
(-) q-=1 . =81 .
(=" gt (=1 ¢, | @
O( ) O( ) | 0
89 ~ 1) f}"u 2l s B —1\€q j;,.q hy
M:_ Z /\q ( [) ?1 (I ) _|_ Z /\q ( 1) ¢1 ([ ) — 0
q=s,+1 . 1=8,+1 .
(— 1) U0 i) L0

where A, > 0 for ¢ =0, 1,..., s and ¢, = 0 or 1 such that
(i) forqg =1,.,s,,
0if f(r9) — Z x ¥ (1) = —*
i=1

Lif f(z7) — Z x*¢(19) = +7%,

=1

(i) forg = sy + 1,..., 8¢,

0if Y X (%) = u, (19,
=1

Lif Y x,* ¢t = 1, ("),
\ 21
(iii) forg =s +1,..,5

0if Y, x;*¢ (1) =y, ,

i=1
q

\1 ]f Z xi*(ﬁf’jkq)(fkq) = ')jlkq b}
g=1
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and
(iv) for g = s, 4- 1,..., s, the ¢, is chosen appropriately so as to force
=0
. > 0.
Since f(¢) is not in the span of {¢(/)l,_,, v* > 0. Thus, we have A, ==
(A ) - r* for ¢ = 1,..., s, and
) = X ) =)

i1

A

¥ if e, = 0,

—71¥ife, = 1.

Noting that A, > 0 implies that s, - 1, i.e., there is at least one vector from
X in the linear combination, substituting the previous observation into (4),
and normalizing the resulting coefficients such that they sum to 1, it is shown
that the origin of R” can be written as a convex combination of vectors from
the specified sets. Since the steps above are reversible to obtain (4), the
convex combination condition is also sufficient. Q.E.D.

It must be noted that in order to apply Theorem 4 either constraint
qualification | or 2 must be satisfied. I"or an exampie of an approximation
problem which does not satisfy the constraint qualifications and which
consequently does not conform to the results of Theorem 4, see [8]. However,
in many important cases these constraint qualifications are satisfied. For
example, for ordinary Chebyshev approximation or Chebyshev approxi-
mation with interpolation (sec [8]) constraint qualification | is immediately
satisfied since 7 can be made large cnough In constraint {1) so that the
inequalities are strict over all of 7. In other problems this can be shown
rather easily, for example in the generalization (a function g.{¢) replaces 0)
of the Lorentz and Zeller problem [16]:

minimize -
s.L. h

(i) —7-0) xatt - flr)y e 7
i==1

1

(ii) €, Z [/l — 1)1 ~\'/,f/ G 1] Cg(t) for Lk =1,.,K,
=,
€. += -+- 1, for all t = T (not necessarily an interval) there is a polynomial
Pz, 1) = Y., &t and # such that constraints (i) and (i) of (5) are
satisfied strictly. Indeed, since T is a compact subset of the real line, 7 C [a, b}
for some interval [a, b], and thus by successively choosing Ax , A ..., A,
(assuming j, <7 =+ << j¢) in

P(t) = Ag(t — a)’K - Ay (t — a)ik=1 - - A (1 — a)r,

so that P(¢) satisfies constraint (ii) strictly, we have the required P(&. 1) == P(t).
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Finaily, under additional conditions it is possible to prove a generalization
of the classical alternation theorem (see [3]) which yields an interesting
interpretation of the optimality conditions. For the purpose of this character-
ization, notice that each of the constraints (i)—(iv) in (1) can be written as a
pair of inequalities bounding either 3", x;¢(¢) or a derivative of 37, x;b(7)
from above and below, and let us use the term upper bounding constraint at
t € T when the upper bound on any of these two sided inequalities is active,
i.e., an equality, at 7 and the term lower bounding constraint at t € T when the
lower bound on any of the inequalities is active at r.

THEOREM 6. Assume that T is a compact subset of the real line, {$(t)\;_,
is a Haar set on T, f(t) is not in the span of {$A)},_, . no derivatives are
involved in the constraints (i1)~(iv), and that either constraint qualification 1 or 2
holds for problem (1). Then a point (7%, x,%,..., x,,*) which is feasible for (1)
vields an optimal approximation if and only if there exist n -i- 1 points t*« for
g == 1, 1 with either tho e T or t' = 1 for some k == 1,..., K such that
at least one t'« forces one of the constraints (i)-(iv) to be active and with
1t D el e the active constraints alternate from an upper bounding
constraint to a lower bounding constraint at consecutive t's,

Proof. The theorem follows at once from Theorem 5 and the character-
ization lemma for the origin to be in the convex hull of a Haar system
(see [3, p. 74]), which forces the signs of the vectors evalauted at consecutive
points to alternate. Thus, the active constraints must alternate from upper
bounding to lower bounding constraints in problem (1). Q.E.D.

3. RATIONAL CHEBYSHEV APPROXIMATION

Given two sets {${1)};_, and {z//,-,(f)}yi , of continuous real-valued functions
forall r ¢ 7. where T is a compact metric space, and a continuous real-valued
function f(¢t) on T, the problem of generalized rational approximation is
to find parameters x,*,..., x,* and y *...., v, * such that

s !
. LaxT e .. "y Xt o

maximum z%f—'*(é’ﬁ—)— — f(f) | = minimum max #‘éz—(—) — f{t)}.
1e7 ZJ.:A Y, lPJ.([) XyyeoosXn LT Z/—;l J'jllyj(t)

[

This problem can be stated in a more convenient form as:

minimize
T S
PloeeeiFm

s.t.
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i) Y xpt) — (m - f(1)) 3 3 Wie) <0, all e T,
in1 in1
(6)
(i) — ) xipt) — (= — f (1) ) »¥(r) <0, all s T,
-1 i

m

(i) D, y¥iAt) =0, all rel.

=1

The first observation is that the set of variables (7, X ,-.., X, + ¥’y seer V) Which
satisfies the relationship (iii) is an open set X°in R*™#1 which follows from
the continuity of the functions {¢,(¢)}., . Next, observe that neither constraint
(i) or (ii) is necessarily pseudo or quasiconvex in the parameters
(T, Xy 5eery X » Y 5oy Vi) fOr all values of these parameters. Thus, because the
constraints do not satisfy the appropriate conditions, neither the necessary
condition Theorem 3 nor the characterization Theorem 4 can be applied
to this problem. However, the following result can still be proved.

THEOREM 7. A point (7%, x,%,..., x,,%, 11 %,..., . *) solves problem (6) if and
only if there are s points t* € {t € Ti | R¥(t) — f(8)i == v*} and s real numbers
v with each v, # 0 and R*(t*) — f(t*) = (sgn y,) || R*¥(t) — f(®)|lr , where
1 <s < n-+m--1,such that

s $a(1%) 0
el = ( : ) ; (7
k=1 ¢n(tk) 0

and
s l/’l(tk) 0
Y yeR¥EDH =1:], (8)
a0
where
R = Y. x40 X 370
and

[ R¥(1) — f(0)llr = max | R*(1) — f(O)] = 7%

Proof. 1If (7%, x;*,..., x,*, »y5..., v,,*) solves problem (6), then by
Theorem 2 there exist real numbers A, = 0, A, > 0 for k = 1,..., s with
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1 <s <{m-+n -+ 1such that

| Y 0
0 . (— 1) y(eh) 0
Y R NI Y : 11, O
of = (=) (%) 0
0 (o (1)) e 0
| 0 | | e | Lo ]

where €, == 0 if constraint (i) is active at ¢* and ¢, == 1 if constraint (ii) is
active at t*. From the first component of (9) it follows that

i [i% </f;(l‘)]—)\ and so A, >0

must hold by constraint (iii) and the fact that A, > 0 for £ = 1,..., 5. Since
F o (DA = (=1 RE), (—D=[R¥() — ()] = 7% and

s (1) 0
> A=) R*(t’“)( 5 =1:1]
=t (%) 0,

from the last set of m components of (9). Thus, by defining y, = (—1)= A,
the necessary conditions (7) and (8) follow.

The sufficiency of conditions (7) and (8) is easily proved as follows.
Suppose (7) and (8) hold. Then if the function R*(¢) is not a best approxi-
mation to f(¢), there is an R(z) = P(¢)/Q(t) such that | R(z) — f(1)|y<
I R¥(t) — f®lir = 7% where P(r) = 3, x;$(t)and Q(t) = ¥, y;fy(t) >0
for all ¢ € T. Furthermore, we have (sgn y, )(R(¢%) — f (%)) <! R(t) — f(Dllr <
IR¥) — fOllr = (sgn 7 (RH*) — £() s0 (sgny)(R¥(r¥) — R(P) > 0
for k == 1,..., s. But since Q(f) > 0 for all 7 ¢ T, it follows that

(sgn y)(R¥(t%) Q(t*) — P(t%)) > 0 for k=1,.,s. (10)

Muitiplying (7) by (x ,..., x,,) and subtracting the results from (8) multiplied
by (¥4 ,-.., V) it follows that

S

Z [R*(tF) Q%) — P(1H)] =

which contradicts (10). Q.E.D.
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Although Theorem 7 is well known [3, p. 160], the merit of this approach
to the theorem is that it is directly generalizable to problems of generalized
rational approximation with auxillary constraints such as interpolation
conditions, which have not been extensively studied. For the problem of
rational approximation with additional interpolation requirements the
following characterization theorem can be obtained.

TuroreM 8.  Consider problem (6) with the additional constraint,

"

(iv) i Xipi1) - bl1) Z vty =0,  forall tebd,

where S is an arbitrary set. Then a point (7%, X%, X,,%, )y " aess ¥, ") solves

problem (6) with constraint (iv) if and only If there are integers s, and s with
1 < sy <58 5 n = m —+ 1 with the properties that

(1) there are s, points th cf{te TI FRE) - f(1) s HRFY — fU) )
and s, real numbers vy, with each y, + 0 and
R¥#*) = fh) = (sgnyp) || R*@) —j e Jor k= 1l,..,s,,

(il there are s — s, points t* €S and s — s, real numbers v, = 0 such

that
[ (") 0
Z')’k( ):<)’ (1)
SOV ean ) \o,
s l/’l(fi“) s l ‘/11(11"‘) ‘ 0
Y veRN [ Y ka(t’”')( : ) = ( . (12)
A l/}m(tl.:) K‘:Su~§ 1 l/im(ﬂ) 0

Proof. The necessity follows as in Theorem 7 since from Theorem 2 either
Xo 7= 0 or s, 7: 1 which implies A, = 0 because 3,°, MY 0, (1)) = A,
and constraint (ii1) holds. For the sufficiency, assume (11) and (12) hold. Also
assume that there is a rational function R(¢) = P(1)/Q(f) where P(¢) =
S xb(1) and Q(r) == S0, yibAe) with P(¢) == b(t) Q) for all r = S such
that R(t) is a better approximation to f(¢) than R*(¢). Then as in the proof of
Theorem 7,

(sgn Vi )(R*(*) — R(t7)) >0 for k=1,.,53. (13)

Multiplying (11) by (xy ,..., x,,) and subtracting the result from (12) multiplied
by (J‘l secen ym):

s

2 AR QUF) — P(M)] + L yelb(t") Q") — P(1%)] =- 0.

k=1 k=g 1
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But since P(¢) = b(¢) Q(¢) for all ¢ € S, this becomes

Y, vl RH(H) O(r%) — P(th)] = 0,

L1

which contradicts (13). Q.E.D.

4. CHEBYSHEV APPROXIMATION WITH A VECTOR-VALUED NORM

In this section, problems of the following form shall be considered. Given
a vector-valued objective function [Fy(x)...., Fo(x)], problem (P,) is given by

“minimize” [Fy(x),..., Fo(x)]

S.t.
() Gix,t)=<0,allteT; fori:=1,..1
(b)y Hyix,u)=0,alluc U, forj - 1., m. (P
(c) xelX",

where:

(1) each T, and U, is a compact set of a complete metric space;
(i)  X°is an open set in R”;
(1i1) each F(x) is a convex function in x which has continuous partial
derivatives with respect to x; and
(iv) each G,(x, N(H(x, u)) is a quasiconvex (linear) function in x which
has continuous partial derivatives with respect to x for each 1 € T; (u € U)).

A feasible point X is said to be efficient for problem (P,) if there does not
exist a point & which is feasible for problem (P,) such that [F(&),..., Fo(&)] =<
[Fi(X),..., Fo(X)] and F (&) < F,(X) for at least one ¢ == 1,..., Q. In other
words, X is efficient for (P,) if no improvement can be made in any component
of the objective function without sacrificing in another component. Further-
more (P,) is said satisfy the vector constraint qualification 1 at X if for each
gy = 1,..., Q there is a point & € R" which satisfies

(1) Fq(v%) < Fq(f)a (I = 1,..., Q7 q # qO 3
() G(x, 1) <0,allteT, fori=1,.,1
(i) H{z,u) =0,allue U, forj = 1,..., m.
Similarly, problem (P,) is said to satisfy the vector constraint qualification 2

at X if for each ¢, = 1,..., Q and any choice of integers 0 <{ s, <{ s, << 5 << n
together with

640/14/1-5
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(1) any choice of s, indices g, with | =l g, = Q and ¢, £ ¢, for

(it) any choice of 5; — s, 1ndices i, with I < /. == /and s; — s, points
th e T, ={teT, (G (X, 1) =0pfork =55+ 1,85,

(iii) any choice of s — s, indices j, with 1 -< j,. <& m and s — s; points
ut e U; for k = s, + 1..... 5, there exists a vector y € R” such that

(iv) VJ,,F(,,;()T’) y o 0k = L, sy,
v) V.G, (X, 1)y <O,k =5y + 1,..., 51, and
(Vi) V. H,(X,ut)y =0,k = s 4 1., 5.
Note that constraint qualification 1 implies qualification 2.
The result which permits useful analysis for problem (P,) is as follows.

THEOREM 9.  Assume that (P,) satisfies vector constraint qualification 1
or 2. A point X is efficient for problem (P,) if and only if X solves problem (P,)
where

0
minimize ) x,F(x)
g=1
s.1.
(1) Gidx,t) <. 0,allteT;fori- 1,.,1
(i) Hix,u) =0,alluc U;forj=1,..m,
(i) xe X (P,

Jfor some x € RO with each «, > 0.
Proof. If X is efficient for (P,), then for each ¢, == 1...., @, there is no
solution z € R" to the system
VF () z <0,
VG{X, 1)z <0, all reT, for i= 1,1

VFE(®z<0, ¢=1..,.0.q9 74,
VH (X, u)z-=0, all weU; for j— 1,..,m.

(14)

The proof of this is very similar to the proof in [10], so the details are not
given here. Since (14) has no solution, by Theorem 1,

AVF(R) A4 Y, ANVG (R, 15+ ) MNVF, ()
Jo=1 8,41

fe=s

Y AVHE W) = 0, (1s)

Ix’:slé—l
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forsome Ay == 0, A, > Ofork = 1,..., 5y, A, =2 Ofork =5, + 1,.., 5y with
either A, > 0 or 5, = 1. If A, = 0, then by vector constraint qualification 2,
there exists a y € R™ such that

Y ANVG(F M)y + Y AV + Y AVH (R 1)y =0
=1 k=s,+1 h=s;+1

— < 0— — = 0 - — = 0>

But this is a contradiction so A; > 0 holds. Since (15) holds for each
gy = 1,..., @, by summing these equations it follows that

o 8 &
VI[E wWlu®] + Y ATGE D+ Y NTHE W) =0, (16)
k=1

=1 fsgil

with each v, > O and each A, > O for & = [,..., 5, . By Theorem 4, condition
(16) is exactly the sufficient optimality condition for problem (P,) since
Z,?:l a,F,(x) is convex. Thus, X solves (P,).
The sufficiency follows at once since if X solves some (P,) and there were
a feasible & for (P,) such that [Fi(X),..., Fo(%)] =2 [Fi(X),..., Fo(X)] with
F (&) < F/(Xx) for some ¢, then Z?:l a, F (%) < Z?Zl 2, F(X) would hold
since x, > 0 for g == 1...., Q. This contradicts the fact that ¥ solves (P,).
Q.E.D.

Approximation problems having the form of problem (P,) have been
previously considered in the literature. Bacopoulos [1] considers the problem
of approximating a given real-valued function by a unisolvent function
simultaneously with respect to several weight functions. Johnson [11]
considers the problem of uniformly approximating a vector-valued function.
The approach developed in this paper permits treatment of these problems
with additional side conditions such as interpolation and one-sidedness.
Consider the following general vector-valued approximation problem:

“minimize” (7, ..... T0)
X, T
s.t.

() — 7 < W] L) 0| < mave
i=1

forg=1,..., 0.

n

(i) 1) <Y xbdt) <u(t)all reT, (17)

=1
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(iii)  yyp =< Z ~\'i¢’i(il‘) “% Yok s
4--1

fork = 1,..., K,

(iv) Y, xipdi') =y for k= Ky b, K,
i1

where /(1) << u(r) for all re T with both /() and wu(r) being continuous
functions on 7 and vy, <y fork = 1., K, , with each f (¢) and W (1) also
being continuous on 7 and W, (¢) > Oforallte T.
THEOREM 10.  Assume that no f (1) is in the span of {$p{1)}L, and that
n . R . . . . o . .
{bd)} ;1 is a Haar set on T. Then a point (v1%,..., 7o, Xy, X, ) which is
Sfeasible for (17) yields an optimal approximation if and only if the origin of R*
can be written as a convex combination of at most n - Q points from the union

of the sets
\ ‘}’)1(’) \
Xy= eq(O( )
( bull)
where e (t) = W (1)[X; ) x;*pt) — J()] and || e,(1 )7 = MaXeer | (1),

g (/)l(r) | 771< '
X, = ( - ( ) Z NFpAr) = Nty s

&

ﬁ eq(l)i — k ()rz(t)]“T TGXS ’

o) /151 \
\ qSJ(I) ) n ’
)(u == ) '%" ( ) Z (ls ([) - ll(t)
L\ g /1 \
g‘ R |
Nypp == 4§ = ( Z »\'i*fﬁi(i") =Yk o»
PRV 5
g 9751(?) v ” '
w0 ( 5 ) S xbiiE) = v
{ ¢n(i/) i1 s
§ GRS )
Xy = ( }_‘ XN = vy
[ g )15 \

/
with at least one point from each X, for q == 1,..., Q.

Proof. Problem (17) satisfies vector constraint qualification 2 because
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{¢1)};., is @ Haar set. This follows from the fact that by appropriately
choosing parameters {x;},, , >, X;$,(¢) interpolates any n values at any n
distinct points #* in T because the determinant

l $i() =+ balt?) ’

bi(27) = ball”)

is nonzero by the definition of a Haar set. Thus, by setting j == (0,..., 0,
&, ..., &,), where {&,}._, interpolates the required values at the required points,
#is a vector which satisfies vector constraint qualification 2.

If (715,00, T0™, X%,y X, F) solves problem (17), then by Theorem 9, the
same point solves problem (2,) for some « & R? with each o, >> 0. Moreover,
since (17) satisfies vector constraint qualification 2, the associated problem
(P,) satisfies constraint qualification 2. By Theorem 4, (71%,...,70™, X1 550X )
solves (P,) if and only if there exists integers 0 < ry <Cry < ry Uy X n -+ Q

Ky +1 <k, <Kforr=r,+1.,rpand | <{q, <0 forr=1,.,r
such that

8 0
oy 4] [ 0 T
-1 :
o o 0 " 0
B z S Y Vil [ —
0 0 (DT ()
|0 (=17 Wot) $i(0") | (1) e |
| (D" W t") bt ]
S ] S -
. 0 0
D I DI N =0 (18)
() | (D) )
| (— 1) $,™) | (— 1) ") |

where A, > O forr = 1,...,ry, €, = 0 or 1 such that

(l) for r = ])"'> r())
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n

0it W, (| L 5 $e) — 1,0)] - 7,

i1
€,
LIt W, O] X v 6le) — fol)] =
i=1
(i) forr —=ry+ 1,., ri,

/ 7
0 if Z X Fh 1) = u(th),
i=1

€, =

Lif ) du(rr) == Ia7),
\ i1

(iiyy forv =r, i L,ry,

SO it i NP
€, A !
<1 if Z': XTIy = Y1k
and -
(iv) forr —ry -+ 1., ry, the e, is chosen appropriately so that A, = 0.

Since no f,(t) is in the span of {$,(1)l,.,. =,* > 0 for ¢ = l...., Q. Thus
A= AT o  forr = 1,..., ry and

n

e (") = W] & x/ i)~ £ ()]

t==1 —77 i e, =

and this rth constraint corresponds to the ¢,th constraint of (i) being active.
Normalizing the resulting coefficients such that they sum to 1, the desired
result is shown. Note that there must be at least one vector from each X,
because of the first @ components of the Eq. (18) and each «, > 0.

Since all the steps are reversible to obtain (18), by Theorem 9 the convex

combination conditions are also sufficient. Q.E.D.
Given a set of parameters {x,*],,, a point t°c T is called a positive
vector-extremum of problem (17) if for some g = 1,..., 0,
T ‘; n [[
W] X 3ot — )] = 0 W] Y. o —f0)|

i=1 i=1
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and similarly 19 is called a negative vector-extremum of problem (17) if for
some g = 1,..., Q,

n

WA 3 x84 — )] =~ W] X x i) — 10

i=1 | i=1 ’T‘

Thus, the vectors composing the sets X, in Theorem 10 are evaluated at
either positive or negative vector-extremums. Moreover, the theorem states
that there must be at least one vector evaluated at a vector-extremum for
each ¢ = 1,..., Q in the convex combination. There are said to be n + 1
vector-alternates on T for problem (17) if there are n |- 1 t* € T with #1 =,

< t"*! such that the points are alternately positive and negative vector-
extremum.

If constraints (ii), (iti), and (iv) in problem (17) are dropped, then it {ollows
from Theorem 10 that (7,*,..., 7%, x;*,..., x,,*) solves problem (17) if and
only if there are at least n -+ 1 vector-alternates for (17). If the point solves
(17), then by the Caratheodory theorem [3], the convex combination can be
reduced to at most n -+ 1 points, and by the alternation lemma for Haar sets
[3, p. 74], these are the n - 1 vector-alternates. Conversely, if there are n -+ 1
vector-alternates, and if there is no vector-extremum for some ¢, 1 < g < Q,
included in this convex combination, it can be inserted in the convex
combination by adding some appropriate convex combination to the original
one since n + 1 such vectors are linearly dependent. Thus, the result is a
convex combination of at most n + @ vectors equal to 0 with at least one
vector from each set X, . By Theorem 10 this is sufficient for (v, *,..., 7o%,
x1%,..., X, %) to solve (17). Consequently, Theorem 10 is a generalization of the
characterization theorem developed by Bacopoulos [1].

5. CHEBYSHEV APPROXIMATION WITH NONSTANDARD NORMS

Previous sections of this paper have described characterization theorems
for Chebyshev approximation problems with the standard objective of
minimizing the maximum error or the vector version of the same objective.
This section briefly discusses some approximation problems which have
nonstandard objective functions, but which are closely related to the
Chebyshev-problems. No proofs are given since they follow the general
pattern used in proofs of previous sections.

First, consider the problem of Chebyshev approximation of both a function
and its derivatives, as first considered by Moursund [18] and Moursund and
Stroud [19].
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The problem is

e

\ - .
minimize maximum NW‘,(I)! Y XLty - [
X B0l : [.“’1 ’ ' |

tel v

WA Y vl — F)|
il Hi

where each W,(1) > Oforall t € Tand both {¢,(¢)},, and f(f) have continuous
rth derivatives for some r ™ 0. This can be rewritten as the following
optimization problem:

minimize v
T.X

s.1.
Tl w0 M)l T (19)
L1
fork =0, 1,..,r.

The solutions of (19) are characterized by the following theorem.

THEOREM 11, A feasible point (7%, x,™,..., x,*) for (19} vields an optimal
approximation for the problem if and only if the origin of R" can be written as
a convex combination of at most n -- 1 points from the r -:- | sets

| Yﬂ’(r))
Xk == el(t)(
[\ g

NERIL Gt : .
i=1

1

W.(t)

where e(t) = W[, x5 (1) — FUAN] for k = 0, L., 7.

Next, consider the problem of Chebyshev approximation of a function and
its derivatives as developed by Laurent [15]. A generalized version of this
problem is

mini‘mize max[iglpum } > W,,(I)J Y X ey - f(/")(t)iws ,
) L =0 i1 /

where both {$,(1)\;, and f(¢) have continuous rth derivatives and each
Wi(t) > 0 for all z ¢ T. This can be rewritten as an optimization problem:

)
minimize ) 7,
X, T 0

s.t.

n

ey, < Wk(t)[z X1y — f‘”(t)] <, for k—0,.,r. (20)

i1

The solutions of (20) are characterized by the following theorem.
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THEOREM 12. A feasible point (t{*...., 7,7, X, *,..., x,*) for (20) vields an
optimal approximation for the problem if and only if the origin of R* can be
wriiten as a convex combination of at most n - 1 points from the sets

o0
/YI: = 3 ek(t) ( )
\ $e)

where e,(t) = Wi(t)(Xi, X;"t) — f9(2)), with at least one point from each
set Xy for k =0,...,r.

. n

ZMWW@—ﬂWﬂ:n%,

fe=]

Wilo)

Finally, it should be observed that additional problems such as relative
error approximation with the objective

minimize maximum = Xibd ) — J(0))
x 1eT \f(t)]

can easily be handled by the techniques of this paper. Also, it should be

obvious that solutions to each of the problems posed in this section could be

characterized when additional constraints such as interpolation, one-

sidedness, and monotonicity are present. This is not done here for the sake

of brevity.

6. CONSTRAINED L' APPROXIMATION

The problems treated in the previous sections have all been concerned with
L= approximation. The purpose of this section is to develop similar character-
ization theorems for solutions of problems of L! approximation. Although
the results are not developed in the fullest possible generality, the theorems
proved here are sufficient to illustrate the potential of this approach to
developing characterization theorems for general L! approximation problems.

Throughout this section it shall be assumed that T = [a, b], a closed
bounded interval of the real line. Consider the following general L! approxi-
mation problem

n

Y. xidt) — f(1)| dt

minimize f
X N
=1

a

s.t.

0 WO <Y x%0) <un), all telabl,

640/14/1-6
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for k==1,., Ky, 2

i3
(i) yu < Y V() <y
%=1

for k=K, L., K.

T

i) Y x ) =y,

i=1

for k = Ky + 1,..., K.

where the indices ji. are chosen nonnegative integers, for each & == 1,..., K.
L(t) << u () for all 7€ [a, b} with both [(f) and wu,t) being continuous
functions on [a, b], each 7* € [¢, b], and y;, <7 yy for bk = K, = 1., K; .

In order to apply the theorems of Section 1 to problem (21), the following
lemma concerning differentiability is needed. Define the function

b

g i Nipit) —-f(f)j dr.

a bz H

F(x) = |
LeMMA 1. If Yo, x;041) — f(2) has only a finite nmumber of zeros in [a, b],
then F(xY is continuously differentiable with

_(UF(.\‘) .

X

_ ’ ' dA)sgn (»/’(1) — Z .\‘i({),-(r)'} di.
vu i=1 !

for i = l,..., n, where the function sgn is defined by

(FL i et o0,
sgn( g(x)) = ' 0 if ¢x)- 0
=1 if glx)- 0.

Proof. Let t,,....1, be the roots of Zf,_lx,d),-(t) — f(ty in [a.b]. For
sufficiently small € >~ 0, define 4 =g -~ e, t; — €]V [t; - ety —€e]U -
Ut, + e b —eland B == [a, b] N A° Define

J == min :{ f(r) — 1; x,;q‘)z-(t)g 1< A: Q.
and observe that if 0 <<} Ad(¢)1 < &, [a, b] then,

sen (10 = 3 %) = M) = sn (1) — 3. xi0).
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on A. Then for small enough A (either positive or negative) it can be shown
that

| #rsen (70 — X xban)) de — [ | 440 d

P E A 2O gy sen (1) — Y ) de

< [ desen (fO = X xid0) i + | 1 $i0)1de

. = ) J

where e; is the unit vector in the ith component. Observe that the left-hand
side of this inequality is bounded below by —d4ke || ¢,(t)lia.p1 and that the
right-hand side is bounded by 4k €] ¢,(#)|i,..1- By choosing A sufficiently
small, € = 0 can be made arbitrarily small, which proves that

F(x . X - Ae)) — F( b n
(ai?) = lim F(x - e)\l) ) _ [ L $,(t) sgn ( f(t) — El xigbi(t)) dr.
as desired. QE.D.

The following theorem characterizes the solutions of problem (21).

THEOREM 13. Assume that problem (21) satisfies either constraint
qualification 1 or 2. Then a point (x,*,..., x,*), feasible for problem (21) with
S x*dt) — f(t) having only a finite number of zeros, solves (21) if and
only if there are integers 0 < 5y << 5; << § <X n together with t"¢€ [a, b] for
qg=1,.,8, 1 <k, <K, for q=1,.,5, K, +1 <k, <K, for g =
So + 1,8y and Ky +1 < k, < K for q = s, + 1,..., s and real numbers
A, 5= 0 such that

n

Lb P(x;t)sgn (f(t) — Z xi*(ﬁi(t)) dt

=1

= Y AP+ Y APy 7 (22)
=1

a=54+1

for all generalized polynomials P(x;t) = Yi_; x;${t) where PV(x;1t) =
S X:$9(t) and where the sign of A, is determined by
G) forq =1,.. s,
Ay > 00 Y X x I (D) = u, (1),

i=1
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A <O Y X gl = b (),
g=1
(11) fOl‘ g =S¢+ 1y 851,

Ay == 0f ) -\‘i*‘isi'jk")(ikq) T Yk,

i=1

Ay <0if Z xi*‘ﬁgjk“)(ikq) = Y1y

i=1
and the signs for A, for ¢ = s; + L,..., s are indeterminant.

Proof. The fact that the objective function F(x) is convex follows from the
triangle inequality. Thus, by Theorem 4 and Lemma 1, (x,*,..., x,,*) solves
(21) if and only if

7

- i B0y sen (f(1) = X v i) de + 3 e

=1

Y A o, (23)

q=s,+1

holds for each i = 1,..., n with the integers s; and parameters A, defined as in
the theorem and

n

Y. x0) — ) or (o) -

i=1

reliela,b)

forq = 1,..., 8y,

n

s g G Vg sk ]
Z xfk‘?sy"kq (1’) = '}/lh",l or '}/2]‘.” .
Tl

e gil" e [a, b]

forg =5,+1,....,5.
The conclusion follows directly from (23). Q.E.D.

Constraint qualification 1 holds for problem (21) if {$(¢)};_, is a Haar set
on [a, b], there are no derivatives in the constraints of (21), i.e., j, == 0 for
k = 1,..., K, and () < uy(t) for all ¢ [a, b]. Thus, Theorem 13 applies
immediately to a wide variety of problems without being concerned whether
or not a constraint qualification is satisfied. Furthermore, for one-sided
approximation, say f(¢) = 3';_, x;$.t), Theorem 13 can be derived without
any condition on the roots of X, x;:(t) — f(¢). Thus, these results
generalize the characterization theorem previously developed by de Vore [6].
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We note that general L? approximation problems with 1 << p << co can be
handled in exactly the same manner as the L! problem. Furthermore, much
more general forms of Lemma 1 can be given which would be less restrictive
in Theorem 13. However, the purpose of this paper has been to explain the
basic types of problems which can be treated by this approach rather than the
most general in each case.

7. CONCLUSIONS

The underlying theme throughout this paper has been that characterization
theorems for solutions of a wide variety of L? approximation problems can be
obtained in a simple and unified manner by using a mathematical optimization
approach. In addition to the unity it lends to the development of character-
ization theorems, the mathematical programming approach is well-suited for
(i) development of efficient algorithms for obtaining best approximations by
using algorithms which solve the associated mathematical programming
problems, and (ii) development of error estimates for an approximation
problem by using the dual optimization problem which is always associated
with the original optimization formulation of the approximation problem.
Future papers will explore both of these aspects. Of particular interest is an
algorithm, closely related to the second algorithm of Remez, which solves
general optimization problems of the form (P) described in Section 1 [9].
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