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There have been several attempts to develop a unified approach to the characte
rization of solutions of U approximation problems, for example [5] and [21].
However, the approaches developed in these papers do not readily lend them
selves to handling problems where the satisfaction of additional constraints,
such as interpolation or convexity conditions on the approximating function,
is required. On the other hand, there have been many papers which have in
dividually dealt with the characterization of solutions of special approximation
problems with particular types of constraints, especially in the area of Chebyshev
approximation. Examples of such special problems include interpolation by the
approxinnting function [4], approximation by a monotone function [16], approxi
mation from one side of the function to be approximated [14], [2, 6], approxima
tion with a vector-valued norm [1, 11], simultaneous approximation of a function
and its derivatives [18], and a series of papers by Taylor: [23-25].

The purpose of this paper is to develop a unified approach to the characteriza
tion of solutions of Chebyshev and I.' approximation problems with the various
types of constraints mentioned above. In addition, it is recognized that many
approximation problems with non-U norms can easily be handled in the samc
manner. In Section I the necessary results from optimization theory are outlined.
Tile remaining sections of the paper are devoted to applications of these results
to various approximation problems: Section 2 to constrained linear Chebyshev
approximatio:l, Section 3 to rational Chebyshev approximation, Sectioa 4 to
Chebyshe\ approximation with a vector-valued norm, Section 5 to Chebyshev
approximation with nonstandard norms. and Section 0 to const<ained L' approxi
mation.

I. INTRODUCTION AND PREUMI"ARIES

The approach to approximation problems taken in this paper was moti
vated in part by the paper of Rice [20] in which a variety of approximation
problems are in essence formulated as mathematical programming problems

*The author wishes to express his appreciation to Professor O. L. Mangasarian, under
whose guidance a part of this research was conducted as a portion of the author's
doctoral dissertation [7] in the Computer Sciences Department at the University of
Wisconsin. This work was partially supported by the Mathematics Research Center at
the University of Wisconsin and by National Science Foundation Contract GJ 362.
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with convex constraints. Let us consider the following general optimization
problem:

minimize F(x)
x

s.t.

(a) Gi(x, t) ::::; 0, for all t E Ti , ieee 1, , I,

(b) Hj(x, u) = 0, for aU 11 E Vj ,) 1, ,111,

(c) XEXo, (P)

where:

(i) each T i and Vj is a compact subset of a complete metric space;

(ii) XO is an open set in R";

(iii) F(x) and each GJx, t) are real-valued functions which have con
tinuous partial derivatives with respect to x for each t E Ti , and each Gi(x, t)
is continuous in t E T i for each x E xo; and

(iv) each Hix, u) is a real-valued linear function in x for each u E V j ,

and is continuous in u E V j for each x E XO.

The necessary and sufficient conditions for solutions of problem (P) have been
previously developed [8], so the results are given here without proof.

THEOREM 1. Let V and V be compact sets in R", W be an arbitrary set
in R". Then either uz < 0, all u E V, vz ::::; 0, all v E V, wz = 0, all WE W,
has a solution z E R", or for any UO E V, there exists s ::::; nand

(i) s vectors
lli E V,

Vi E V,

Wi E TV,

i=l, ... ,Sl'

i = S\ + 1, , S2 ,

i = S2 -j- J, , s,

(ii) s -+ 1 real numbers 1\ , i = 0, 1, ... , s such that

Ai ° for i = 0, 1, ... ,s2'

with either Ao > °or Sl I, such that,

Aouo + L Aiui
i~l

.;;;"

I Aivi -;- I Aiwi = 0,
i=Sl+l i=s2+1

but not both.

Using Theorem 1 we can prove Theorem 2.

THEOREM 2. Let x be a local minimum of problem (P). Then there exist
integers So and s with °::::; So ::::; s ::::; n,
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(i) there are So indices i" with 1 :c;; i" :c;; I together with So points
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for k = 1,..., so,

(ii) there are s - So indices jl' with 1 :c;; j" :c;; m together with s - So
points u" E Uj"for k = So + 1, ... , sand

(iii) there are s + 1 real numbers Ao , ... , As with Ao > °or So 1, and
A" > 0 for k = 1,... , so, such that

SJ S

(iv) Ao'VxF(x) + L A"'V,.G,Jx, tIc) -;- L A1SrH;,(x, ul
.) = o.

I..~l "~so+l

In order to guarantee that the conditions of Theorem 2 are meaningful,
we must have Ao > 0. The following constraint qualifications are sufficient
to prove this. As in [17], a function F(x) is defined to be pseudoconvex at .X' if
'VF(x)(x - x) ;?: °implies F(x) ;:::~ F(x).

Constraint Qualification 1 (Modified Interior Point Condition)

The problem (P) satisfies the modified interior point condition if each Gi(x, t)
is pseudoconvex in x for all t E T, for i = 1,. .. , I and there exists a point
x E R" which satisfies

(i) Gi(x, t) < 0, all t E T, for i= 1, , I, and

(ii) Hj(x, u) = 0, all u E Uj for j = 1, , m.

Constraint Qualification 2 (Modified Strict Inequality Condition)

The problem (P) satisfies the modified strict inequality condition at a given
point .X', where .X' E X = {x E XO I Gi(x, t) < 0 'it E T, for i == L,. .. , I and
Hj(x, u) 0 'iu E U j for j = I, ... , m}, if for any choice of integers So and s
with 0 < So ,,;; s :c;; n, together with

(i) any choice of So indices i" with IS; i" :c;; 1 and So points t ":E i\=
{t E Til. ! G'k(X, t) = o} for k = 1,... , So and

(ii) any choice of s - So indices j" with 1 'S; j,,;; m and s -- So points
l/' E Ujk for k = So + ],..., s, there is a vector .1' = (.1'1 ,''', .1'n) E Rn such that

n

(iii) L Jq'VxP,lX', tic) < 0 for k = I,... , SO and
q~1

n

(iv) LYq'V"'qHi,.(x,uk)=O for k=so+l, ... ,s.
q~1
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For most problems, it is usually easier to verify constraint qualification 1
rather than constraint qualification 2. Moreover, under the assumption that
Gi(x, t) is differentiable in x, constraint qualification 1 implies constraint
qualification 2.

TH03REM 3. Let x be a local minimum ofproblem (P). If either constraint
qualification 1 or 2 is satisfied at x, then ,1.0 > 0 is guaranteed in Theorem 2.

Under quite general convexity assumptions on the objective function and
constraints of problem (P), the necessary conditions of Theorem 3 are also
sufficient. Generalizing from [17], a real-valued function G(x, t), where x ERn,
t E T and T is an arbitrary set, is said to be quasiconvex at .x if for each x such
that G(x,1) G(.x, t) Vt E T, then G(l ~ A)x + Ax, 1) G(.x, t) holds
for all 0 A 1 for each t E T. The function C(x, t) is said to be quasiconvex
on a set r C Rn if it is quasiconvex for each point x E r.

THEOREM 4. In addition to the assumptions for problem (P), let F(x) be
pseudoconvex on Xo, each Gi(x, t) be quasiconvex on Xo, and assume that either
constraint qualification 1 or 2 holds at X. Then x solves problem (P) if and only
if the conditions (i)-(iv) of Theorem 2 hold with ,1.0 > o.

In the following sections of this paper we shall primarily be concerned with
linear approximating functions given by ~;'~1 XifjJ;(t) for all t E T, where Tis
a compact subset of a complete metric space, and where {eplt)}7" 1 is a set of
continuous functions on T. It shall also be assumed that jet), the function
being approximated, is continuous on T. Unless explicitly stated otherwise,
these assumptions hold for all the problems considered in the following
sections.

2. LINEAR CHEBYSHEV ApPROXIMATION

The class of problems to be considered in this section includes Chebyshev
approximation problems where there are bounds on the approximation
~7~1 Xiep;(t) and its derivatives either (i) at a certain finite number of points
in the interval of approximation, or (ii) over the entire interval of approxi
mation. The general problem can be written as

s. t.
m1l11mlZe T

X,T

n

(i) -T:S;; L Xiepi(t) - fU) T,

i=l

all t E T, (I)
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n

(ii) Ik(t) ~ I xi~~h)(t) ~ Uk(t),
i",,1

n

(1'1'1') / "', '/'(;k)/-k) ,/'Ylk ~ L Xi't'i \t '" Y2k ,
i~1

all t E T, for k =~ 1, ... , Ko

for k = Ko -+- 1,... , K1 , (1)

n

(iv) I xi~~h)(tk) = Ylc
i~1

for k = K 1 -+- 1, ... , K,

where the indicesjk are prescribed nonnegative integers, for each k = 1,... , Ko,
Ik(t) ~ u/c(t) 'it E Twith both l/c(t) and u/c(t) being continuous functions on T,
each {k E T, and Ylk < Y2/C for k = Ko -+- 1,... , K1 .

Many problems previously considered in the approximation theory
literature are special cases of (1). For instance, first consider the case where
Ko = 1, K = Ko (no constraints (iii) and (iv», and)1 = 0, which results in
the problem:

mIlllmlze T

s.t.
n

(i) - T :,;;; I Xi~i(t) - j(t)
i~1

n

(ii) I(t),s; I Xi~i(t) :,;;; u(t),
£=1

" (2)

all t E T. If we let u(t) :==0 M for all t E T, where M is a very large positive
number, and I(t) = 0 for all t E T, then we have the problem of nonnegative
approximation which has been studied by Jones and Karlovitz [12] under the
condition that {~;(t)}~=1 forms a Haar set on T. If we let I(t) == - M 'it E T,
where M is a large positive number, and u(t) = jet), then we have the problem
of one-sided approximation (approximation from below), which has been
studied by Kammerer [13]. Generalized versions of problem (2) have been
studied by Taylor and others in a series of papers: Taylor [23]-[25], Taylor
and Schumaker [22], and Taylor and Winter [26].

A second class of problems can be brought into consideration by setting
K C~~ Ko (no constraints (iii) and (iv) in (1» and either (i) h(t) ,=0 0 and
u/c(t) M, or (ii) h(t) == - M and u/,(t) =:=' 0 where M is a very large positive
number in either case. This leads to the problem

s.t.
mInImIZe T

X,T

n

(i) - T I Xi~i(t) - j(t) T,

i~1

(3)
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(ii) Ele [ f Xi 4>(h)(t)] ~ 0,
~::.;;ol

for k = 1,... , K and Ele = ±I,

all t E T. Lorentz and Zeller [16] have considered a special case of (3), where
T = [a, b], an interval of the real line, the set {4>i(t)}~~l = {ti-l}~~l

(polynomial approximation), and K ~ n. Special cases of interest for (3) are

(i) K 00= 1 and.il = I: approximation by a monotone function,

(ii) K = 1 and.il = 2: approximation by a convex function.

The main result of this section is the following characterization theorem
for the original problem (I).

THEOREM 5. Assume that/(t) is not in the 5pan of{4>i(t)}:~l and that either
constraint qualification 1 or 2 holds for problem (1). Then a point
(T*, Xl *, ... , Xn *) which is feasible for (I) yields an optimal approximation if
and only if the origin of R" can be written as a convex combination of at most
II + I points ji-om the lillion of the sets

\'" "I,
maXtET [ e(t)!,

I 4>ij,)Uk) I n I
X k == ± ( :) I X/4>;jk)U k

) = Ylc I '
, 4> ~:k) (e') i~l )

with at least one point from the set X T included nontrivially.
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Proof Since each of the constraints (i)-(iv) are linear in x and 7 and either
constraint qualification 1 or 2 holds, the characterization conditions of
Theorem 4 hold. Thus, there are integers 50 , 51 , 52 , and 5 with 0 "'; 50 :s:; 51 :s:;
52 :s:; 5 :s:; n together with ta EO T for q = 1,...,51 , I:S:; kq :s:; Ko for
q = 50 + 1,... ,51 , Ko + 1 :S: k q :S: K1 for q = 51 + 1, .. ,,52 , and K[ + 1 ~
k q ~ K2 for q = 52 + 1, ... ,5 such that

-~~J ' s, - [(-J)~~1(tq)] s. - [(_-IP : ih'l}(tq)]1\0 . T I 1\ . I Aa '
: fJ e-=! : (I C,,", 8

0
+1 :

o (-lY'l ef;n(t") (-1)''1 ef;;:k)(tq)
(4)

, s~ - [(-lY'I~ihU)(tk")] s - [(-l)''l~ijk)(lkq)] l~~'JT I ~ , + I ~ ,
q~sl+1 : q~s2+1 :

(-1)''1 ef;~k'>(l7'q) (-1)''1 ef;;:,,)(tlcq)

where Aq > 0 for q = 0, 1,.. ,,5 and Eq = 0 or 1 such that

(i) for q = 1,... ,50 ,

n

oifl(ta) - I x;*ef;;(tq) = -7*,
;~1

n

1 if f(t q) - I x;*ef;;(ta) = +7*,
;~1

(ii) for q = 50 + 1,...,51 ,

o if f x* 1J~ic~(tq) = Ulcq(t"),
;~1

E a-
n

1 if I x/ef;(h)(ta) = llc/lq).
ic-ed.



58 KENNETH R. GEHNER

and
(iv) for q ~~ S2 i- 1, ... , S, the Eq is chosen appropriately so as to force

Aq > O.
Sincef(t) is not in the span of {1>,(t)}:'~I' 7* :> O. Thus, we have Aq ===

(A,,/7*) . 7* for q =~ 1, ... , So and

n

c(t',) = L X/1>,(I") - f(f'I)
i 1

\7*ifEq O.
1--7*ifEq I.

Noting that Ao > 0 implies that So I, i.e., there is at least one vector from
X, in the linear combination, substituting the previous observation into (4),
and normalizing the resulting coefficients such that they sum to ], it is shown
that the origin of Rn can be written as a convex combination of vectors from
the specified sets. Since the steps above are reversible to obtain (4), the
convex combination condition is also suflicient. Q.E.D.

It must be noted that in order to apply Theorem 4 either constraint
qualification 1 or 2 must be satisfled. For an example of an approximation
problem which does not satisfy the constraint qualifications and which
consequently does not conform to the results of Theorem 4, see [8]. However,
in many important cases these constraint qualifications are satisfied. For
example, for ordinary Chebyshev approximation or Chebyshev approxi
mation with interpolation (see [8]) constraint qualification I is immediately
satisfied since T can be made large enough in constraint (i) so that the
inequalities are strict over all of T. In other problems this can be shown
rather easily. for example in the generalization (a function g;,.(t) replaces 0)
of the Lorentz and Zeller problem [16]:

ml11lllllZC 7"

s.l.
n

(i) -- 7 I X,ti ]

i -~-' 1

(( t)

(5)

(ii) E" I [iii;,· I) ... I· XJ
[=oJ;;

for k =,.~ I, ... , K,

E/: I, for all t E T (not necessarily an interval) there is a polynomial
Pix, t) ~== L:'l /'1:;1'-1 and T such that constraints (i) and (ii) of (5) are
satisfied strictly. Indeed, since T is a compact subset of the rea] line, T C [a, h]
for someinterva] [a, h], and thus by successively choosing AK , AK 1'··" A I

(assumingi] <: ... <: .iK) in

P(t) = AK(t - a)iK + A K- 1 (t -- a)iK-I ... A1(t -- a)ir •

so that P(t) satisfies constraint (ii) strictlY, we have the required Pix, t) P(t).
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Finally, under additional conditions it is possible to prove a generalization
of the classical alternation theorem (see [3]) which yields an interesting
interpretation of the optimality conditions. For the purpose of this character
ization, notice that each of the constraints (i)-(iv) in (I) can be written as a
pair of inequalities bounding either 2:~~1 X i 4>i(t) or a derivative Of2:;"l x;rf;(t)
from above and below, and let us use the term upper bounding constraint at
t E T when the upper bound on any of these two sided inequalities is active,
i.e., an equality. at t and the term lower bounding constraint at t E Twhen the
lower bound on any of the inequalities is active at t.

THEOREM 6. Assume that T is a compact subset of the real line, {4>,(t)};!~1

is a Haar set 0/1 T, f(t) is not in the span of {4>i(t)};!~1 , no derivatil'es are
inl'Olved in the constraints (ii)-(iv), and that either constraint qualification 1 or 2
holds for problem (I). Then a point (T*, x l *, ... , x n *) which is feasible for (1)
yields an optimal approximation (f and only if there exist n 1 points t k" for
q I, ... , n- t with either t l

,'1 E Tor t l", = FloI' some k !" .., K ,such that
at least one t"'/ forces one of the constraints (i)-(iv) to be actil'e and with
t" . t l,,,+! the active constraints allernate ji'OIJ1 an upper bounding
constraint 10 a lower bounding constraint at consecutive t l,,,.

Proof The theorem follows at once from Theorem 5 and the character
ization lemma for the origin to be in the convex hull of a Haar system
(see [3, p. 74J), which forces the signs of the vectors evalauted at consecutive
points to alternate. Thus, the active constraints must alternate from upper
bounding to lower bounding constraints in problem (I). Q.E.D.

3. RATIOT\AL CHEBYSliEV ApPROXIMATlO\:

Given two sets {4>i(t)}:'~1 and (i/J,v)};'l of continuous real-valued functions
for all t c T. where T is a compact metric space, and a continuous real-valued
function f(t) on T, the problem of generalized rational approximation is
to flnd parameters Xl *, ... , X n * and J't *..... Vi" * such that

This problem can be stated in a more convenient form as:

minimize T
T,XI····,X n ,

J'l,···,J'nl

s.t.
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h ?n

(i) I Xi,jJ;(t) - (T + f(t)) I J}Pj(t) 0,
i-I j-l

n 'lit

(ii) - I xi,jJ;(t) - (T ~- fU)) I J}Pj(t) 0,
i-I jl

all t Ie- T,

all t" T,

(6)

111

(iii) I y/P;(t) > 0,
i-I

all t E T.

The first observation is that the set of variables (T, Xl"'" Xn ')'1"'" YIII) which
satisfies the relationship (iii) is an open set XO in Rn+rn, 1, which follows from
the continuity of the functions {f;(t)};~l . Next, observe that neither constraint
(i) or (ii) is necessarily pseudo or quasiconvex in the parameters
(T, Xl'"'' Xn , YI ,... , YIII) for all values of these parameters. Thus, because the
constraints do not satisfy the appropriate conditions, neither the necessary
condition Theorem 3 nor the characterization Theorem 4 can be applied
to this problem. However, the following result can still be proved.

THEOREM 7. A point (T*, Xl *, ... , X n *, Y1 *, ... , Yin *) solves problem (6) ifand
only if there are s points t k E {t E Til R*(t) - f(t)1 =, r*} and s real numbers

Ylc with each Ylc cF 0 and R*(t k
) - f(t k

) =-~ (sgn YIc) Ii R*(t) - f(t)i!T' where
1 :s;: s :s;: n + m + 1, such that

(7)

and

(8)

where

n I HI-

R*(t) = I xi*'Mt)/ I y;*f;(t)
,-1 ,-1

and

I' R*(t) - f(t)llr = max I R*(t) - f(t)1 = T*.
. ~T

Proof If (T*, x 1*, ... , x n *. Y1*'"'' y",*)
Theorem 2 there exist real numbers 1'10

solves problem (6), then by
0, Ai< > 0 for k = I, ... , s with
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,::;; s ,::;; III + n + I such that

'"- I y/'Pit")
j~,l

o

61

o

o

o

o -(T* :- (-I )'kf(t")) PIII(t/,)

o

o

o

o

(9)

where E/, == 0 if constraint (i) is active at t" and E" ,,~ I if constraint (ii) is
active at t ". From the first component of (9) it follows that

t A" [f Y;*if1i t" )] = ,1,0 and so ,1,0> 0
"~l )1

must hold by constraint (iii) and the fact that A" > 0 for k = I, ... , s. Since
(T* + (-I)'<f(t")) = (-I )<1' R*(tk), (-I )<k[R*(tI,) - f(t':)] = T* and

from the last set of m components of (9). Thus, by defining Yk = (--1)<" Ale ,
the necessary conditions (7) and (8) follow.

The sufficiency of conditions (7) and (8) is easily proved as follows.
Suppose (7) and (8) hold. Then if the function R*(t) is not a best approxi
mation to f(t), there is an R(t) = P(t)!Q(t) such that I: R(t) - f(t)I!T<
I R*(t) - f(t)IIT = T* where pet) = Li~l x/<plt) and Q(t) ,= Lj~l Yj~~it) > 0
for all t E T. Furthermore, we have (sgn Yk)(R(tle)- f(tle)) ,::;; I! R(t) -f(t)I!T <

R*(t) - f(t)IIT = (sgn Yic)(R*(t") - f(t")) so (sgn Yic)(R*(t") - R(t k ) > 0
for k = I, ... , s. But since Q(t) > 0 for all t E T, it follows that

(sgn Yic)(R*(t k
) Q(t k

) - pet')) > 0 for k = I, ... , s. (10)

Multiplying (7) by (Xl"'" X n ) and subtracting the results from (8) multiplied
by (YI ,.... Ym) it follows that

s

L y,JR*(t") Q(t k
) - P(t k)] = 0,

/:~l

which contradicts (10). Q.E.D.
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Although Theorem 7 is well known [3, p. 160], the merit of this approach
to the theorem is that it is directly generalizable to problems of generalized
rational approximation with auxiliary constraints such as interpolation
conditions, which have not been extensively studied. For the problem of
rational approximation with additional interpolation requirements the
following characterization theorem can be obtained.

THEOREM 8. Consider problem (6) v..'ith the additional constraint,

fi In

(iv) L: XirPi(t) b(t) L: y;!f;(t).= 0,
'I 1 1

for all t E S,

where S is an arbitrary set. Then a point (T*, Xl *,..., .'>n" YI •... , YiI,") soh:es
problem (6) with constraint (iv) if and only if there are integers So and s with
1 :( So 05 n -~ 111 +- 1 with the properties that

(i) there arc So points t l• c {t E T I R*(t) .... f(t)]

and So real numbers Yk with each YI. 0 and
R*(t) ~ f(th]

for k ·.=c I, ... , so,

(ii) there are 05 _. So points t k E Sand s - So real numbers Yk '/= 0 such
that

( II)

( 12)

Proof The necessity follows as in Theorem 7 since from Theorem 2 either
Ao "> 0 or So I which implies 1\0 0 because L~~l l\cl2::';' I Y;!f;(t/,)] Ao
and constraint (iii) holds. For the sufficiency, assume (11) and (12) hold. Also
assume that there is a rational function R(t) P(t)/Q(t) where P(t)

Li~l XicP;(t) and Q(t) L~'~l)'dJ/(t) with pet) b(f) Q(t) for all t ~Ssuch
that R(t) is a better approximation tof(t) than R*(t). Then as in the proof of
Theorem 7.

for k=I, ...,so. (13)

Multiplying (II) by (Xl"'" xn) and subtracting the result from (12) multiplied
by (YI ,...• Ym).

"I Yi[R*(t 1
,) QW) - P(tle)] + I Yklb(tl) Q(t ") _. P(t/,)]

1<:=1 k'=.80·:1

o.
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But since pet) = bet) Q(t) for all t E S, this becomes

·"'0

I Yk[R*(tI'l Q(til ~ P(tl'l] = 0,
I:" 1

which contradicts (13).
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Q.E.D.

4. CHEBYSHEV ApPROXIMATIO,,", WITH A VECTOR-VALUED NORM

In this section, problems of the following form shall be considered. Given
a vector-valued objective function [Fj(x) .... , FQCy)], problem (P.,,) is given by

"minimize" [Fly), ... , Fo(x)]

s.t.

(a) GJx, t) 0, all t E T, for i I I.

(b) Hj(x, u) ~= 0, allu0 Uj for} !' , III.

(e) XEX(!,

where:

(P,.)

(i) each T, and U; is a compact set of a complete metric space:

(ii) XO is an open set in R";

(iii) each Fq(x) is a convex function in x which has continuous partial
derivatives with respect to x; and

(iv) each G/(x, t)(HiCx, 11)) is a quasiconvex (linear) function in x which
has continuous partial derivatives with respect to x for each t E T, (u E UJ.

A feasible point x is said to be efficient for problem (P t ,) if there does not
exist a point i' which is feasible for problem (P,,) such that [Fl(x), ... , Fo(x)]
[Fl(x), ... , Fo(.\:)] and F(/5':) < Fq(.\:) for at least one q =, 1, ... , Q. In other
words, x is efficient for (Pv ) ifno improvement can be made in any component
of the objective function without sacrificing in another component. Further
more (Pv) is said satisfy the vector constraint qualification 1 at x if for each
qo = 1, ... , Q there is a point .X' E Rn which satisfies

(i) Fq(x):( Fq{.x), q == 1, ... , Q, q c/= qo,

(ii) GJx, t) < 0, all t E T, for i= 1, , I,

(iii) H;(.Y:, 11) = 0, all 11 E Uj for j = 1, , m.

Similarly, problem (Pv) is said to satisfy the vector constraint qualification 2
at x if for each qo = ],..., Q and any choice of integers °:( So :( Sl :s:; S ,,( n
together with
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(i) any choice of So indices qk with I qk Q and qk qo for
k = I, ... , SO,

(ii) any choice of S1 - So indices ik with j il. I and S1 - So points
t l

• E 7';=, {t E T; . G; (X, t)= OJ for k So +- I, ... , S1 ,
k k 1.

(iii) any choice of s - S1 indices)" with I )" m and s - S1 points
ul

• E Vi,.. for k c=c S1 +- I, ... , s, there exists a vector .J' E Rn such that

(iv) \J;Fqk('X)Y O,k I, ... ,so,

(v) \ ~G;/(X, t'·).J' < 0, k == So +- I, , S1 , and

(vi) vXHj (X, 1/) Y == 0, k SI! I, , s.
Ie

Note that constraint qualification I implies qualification 2.
The result which permits useful analysis for problem (P v) is as follows.

THEOREM 9. Assume that (Pc) satisfies rector constraint qualification 1
or 2. A point .X is efficient for problem (Pl') if and only if x solves problem (Pa )

where
Q

minimize LXqFq(x)
(/,-,,-1

s.t.
(i) G;(x, t) 0, all t E T;/or i I, , I,

(ii) H;(x, u) = 0, all u E VJorf I, , m,

(iii) x E X'\

for some (x E RQ with each C'i.q > 0.

Proof If.x is efficient for (Pv), then for each qo = 1, ... , Q, there is no
solution Z E Rn to the system

\ Fqo(x) Z < 0,

vG;(X, t) Z < 0,

vFq(X) Z 0,

vHi.x, u) z === 0,

all t E T; for i == I, ... , I,

q = I, ... , Q, q qo,

all II E Vi for ) ~ 1, ... ,111.

(14)

The proof of this is very similar to the proof in [10], so the details are not
given here. Since (14) has no solution, by Theorem j,

s.)

AovFq/X) L A/.•VG;Jx, t l
.)

/:~1

L AI.·V H;,(X, Uk) =~ 0,
1.'=81+1

'-:1

L: A"vFqk(x)
1;'=, s()-~ 1

(15)
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for some Ito ~ 0, Itk > 0 for k = I, ... , So, Itk 0 for k c.= So + I, ... , Sl with
either Ito > 0 or So ;;, I. If Ito = 0, then by vector constraint qualification 2,
there exists ayE Rn such that

'<;,1 '''1 S

L ItkYGi.(X, fl,»)" + L ItkYFq/cCx))" + L AkVHh(x, Uk))" c= O.
/;=l l:=t'o+l 1'="'1-11

~ <0-+ ~ 0-+ ~ = 0·->-

But this is a contradiction so Ito > 0 holds. Since (15) holds for each
qo == 1, ... , Q, by summing these equations it follows that

Q R,I .<;

V [ L cxqFix)] T L ItI,vGik(X, fl,) + I Itl,vHhCx, Ul,) = 0, (16)
(l=1 /;-.- 1 /;'.'''''011

with each [Yrt > 0 and each It k > 0 for k = I, ... , So . By Theorem 4, condition
(16) is exactly the sufficient optimality condition for problem (P,) since
L~d cxqFq(x) is convex. Thus, x solves (P,,).

The sufficiency follows at once since if x solves some (Py ) and there were
a feasible x for (PI) such that [FI(·X:), ... , Fo(x)]: [Fl(.x), ... , Fo(.x)] with
Fq(x) < F,z{.x) for some q, then L~~l cxqF,,(x) < L:~~l eXqFq(x) would hold
since ,Yq 0 for q = L. .. , Q. This contradicts the fact that x solves (PJ.

Q.E.D.

Approximation problems having the form of problem (PI) have been
previously considered in the literature. Bacopoulos [I] considers the problem
of approximating a given real-valued function by a unisolvent function
simultaneously with respect to several weight functions. Johnson [11]
considers the problem of uniformly approximating a vector-valued function.
The approach developed in this paper permits treatment of these problems
with additional side conditions such as interpolation and one-sidedness.
Consider the following general vector-valued approximation problem:

"minimize" (Tl .... , TO)
X,";'"

s.1.

(i) - T q :(; Wq(t) L; xicMt) -(q(t)J T q all f E T,

for q = I, ... , Q,

n

(ii) 1(1):(; I XiePi(f) U(f) all f E T,
i=l

(17)
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Ii

(iii) Ylk ~ I ·\AJ,;(F) Y2k ,
I 1

for k I, ... , Au,

(iv) I X,ePi((") Yk
i,::-l

for k Ao I, ... , A,

where l(t) .< u(t) for all I T with both I(t) and u(l) being continuous
functions on T and Yll. .< Y2k for k 1, ... , Ko , with each/'I(t) and WQ(t) also
being continuous on T and Wq(t) 0 for all t 0 T.

THEOREM 10. Assume that no Io(t) IS in the span 0/ {1>;(t )};~1 and that
{ ,I. ()In

. 11 7' 00 1 '," Y' *) I,' I ''j'i t Ji~1 IS a aar set on ., lell a POlllt (T1 , ..• , TO ", Xl", ... , X n W IIC I IS

feasible for (17) yields an optimal approximation iland only ilthe origin ofR"
can be written as a convex combination ofat most n -i- Qpointsfrom the union
of the sets

\ ( cPl.(t) ') II., /

Xl = ('- eP,:(t) , ~l X/"'cPi(t) = I(t)) ,

X"' l,' -I- (' ePl:(t))'I~l X;*ePi(t) = u(t) II' ,

, cP,JI) ,

\ (' ePl~lh) )1_ ,- I
Xu =, I, - ,1>,,(l

k
) ,II X;*ePiU

I

,) = YH. \ '

\ , (ePl~F) ')111 "'." I
)(21,' IT" eP,,(I{') , II X,ePi(t

l

') = Yu \ '

XI, .!~ ( 1>,1;~/') )\f Xi*ePi(tlC) 'YIII'
eP,,(t{') I ,01 I

with at least one pointlrom each Xqfor q I,... , Q.

Proof Problem (17) satisfies vector constraint qualification 2 because
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{(Mt)};~l is a Haar set. This follows from the fact that by appropriately
choosing parameters {X;}~~l , L~~I XiCPi(t) interpolates any n values at any II

distinct points tie in T because the determinant

I
CPI(t I) ... CPn(tI) I
CPl(t") .:. CPn(t") ,

is nonzero by the definition of a Haar set. Thus, by setting y " (0, ... , 0,
Xl , ... , '~n), where {X;}:I interpolates the required values at the required points,
y is a vector which satisfies vector constraint qualification 2.

If (71*'"'' 7Q*, X1*, ... , x n *) solves problem (17), thcn by Theorem 9, the
same point solves problem (Pa) for somc ex c RQ with each exq :> O. Moreover,
since (17) satisfies vcctor constraint qualification 2, the associated problem
(Pa) satisfies constraint qualification 2. By Theorem 4, (71 *, ... ,7 Q *, Xl *""'Xn *)
solves (Pa) if and only if there exists integers 0 ,S:; '0 :C 1"1 1"2·s:. '3 '-;; II + Q
together with t r E= T for' == 1"""1' 1 :C k r :C Ko for I" C=C'l -:- 1"""2'
Ko+1 :Ckr:CKfor 1"=1"2+1,... ,';) and 1 ,,;;qr:CQ for 1"==1''''''0
such that

°

o

o

T(J

+ L Ar
roo:l

o
-I

o

°

o

r,

+ L Ar
r=Fo ;-1

o

r2 0 l' :~ 0

+ L Ar ---------- I L Ar --------
== ° (18)-I

r~rl+I (--lyr CPIu kr) r=r 2 -!-1 (-I yr cpIC/ler)

(-IYr CPnU I
" r) (-1 yr CPnUkr)

where Ar :> 0 for I" = 1''''''3' Er = °or 1 such that

(i) for' = 1,... ,1"0'
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o if W",(t
r
) [ f X/cPi(t')- ;;I,(n]

l,,-,1

I if W",(t')[ f X/cPi(ti) --/",(n]
/.=1

x
TOr'

and

(ii) for I' -= 1'0

(iii) for I' =c 1'1

(iv) for r-~ 1'2

I .... , 1'1 •

( 'fI

o if I x,*cPlt') = u(t r
),

i=l

It

I if I X;*cPi(t') == I(t '),
i'-I

I ~ ..., 1"']. ,

\0 ;) ,f, X/1,(I"') Y", .

i1 ;r ,'2:, x /1,(1") "C Y", .

1.... , 1':; , the E, is chosen appropriately so that 1\ '> O.

Since no f,,(t) is in the span of {cPi(t)};'J . T,,"
'\ == A.,IT"* . T" * for I' c.= 1, ... ,1'0 and

eq,(t')-- w",ur) [ f X,*cPi(t') -' f;,,u')]
?,,,-= 1

o for q = L.... Q. Thus

-- T,;, if E r c.= I.

and this rth constraint corresponds to the qrth constraint of (i) being active.
Normalizing the resulting coefficients such that they sum to I, the desired
result is shown. Note that there must be at least one vector from each X Q

because of the first Q components of the Eq. (18) and each cx" > O.
Since all the steps are reversible to obtain (18), by Theorem 9 the convex

combination conditions are also sufficient. Q.E.D.
Given a set of parameters {Xi*}~~J' a point to E T is called a positive

vector-extremum of problem (17) if for some q I",., Q,

W,ltO)[ f X,*cPi(tO) -fi tO»)
1- "-1
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and similarly to is called a negative vector-extremum of problem (17) if for
some q = 1, ... , Q,

Wq(tO) [ I Xi*(/J;(tO) - ./q(tO)] ==
1=1

Thus, the vectors composing the sets X q in Theorem 10 are evaluated at
either positive or negative vector-extremums. Moreover, the theorem states
that there must be at least one vector evaluated at a vector-extremum for
each q = I, ... , Q in the convex combination. There are said to be n + I
vector-alternates on T for problem (17) if there are n + I t" E T with t]
,s;; t"+l such that the points are alternately positive and negative vector
extremum.

If constraints (ii), (iii), and (iv) in problem (17) are dropped, then it follows
from Theorem 10 that (T[ *, ... , TO *, Xl *, ... , X n *) solves problem (17) if and
only if there are at least n + I vector-alternates for (17). If the point solves
(17), then by the Caratheodory theorem [3], the convex combination can be
reduced to at most n + I points, and by the alternation lemma for Haar sets
[3, p. 74], these are the n + 1 vector-alternates. Conversely, if there are n + I
vector-alternates, and if there is no vector-extremum for some q, 1 :S. q ,,{ Q,
included in this convex combination, it can be inserted in the convex
combination by adding some appropriate convex combination to the original
one since n + 1 such vectors are linearly dependent. Thus, the result is a
convex combination of at most 11 + Q vectors equal to 0 with at ]Ieast one
vector from each set X q • By Theorem 10 this is sufficient for (T1*, ... , TO*'

Xl *, ... , X n *) to solve (17). Consequently, Theorem 10 is a generalization of the
characterization theorem developed by Bacopoulos [1].

5. CHEBYSHEV ApPROXIMATION WITH NONSTANDARD NORMS

Previous sections of this paper have described characterization theorems
for Chebyshev approximation problems with the standard objective of
minimizing the maximum error or the vector version of the same objective.
This section briefly discusses some approximation problems which have
nonstandard objective functions, but which are closely related to the
Chebyshev-problems. No proofs are given since they follow the general
pattern used in proofs of previous sections.

First, consider the problem of Chebyshev approximation of both a function
and its derivatives, as first considered by Moursund [18] and Moursund and
Stroud [19].
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The problem is

miniJllize nia~,ill:1L1~11 ) WIl(t). L xiePJt)
fccT \ ; 1

I

Ii t)i .

W',(t)j ~1\iePi(,\t) - I(r\t)I~ .

where each W I,(1) ';> 0 for all t E Tand both {ePl(t)};'1 andf(t) have continuous
rth derivatives for some r> O. This can be rewritten as the following
optimization problem:

111111l111lZe T
T ,x

s.t.

T

iI

WI.(t)( L X'eP;l\t)- fil\t))
i·-,-c 1

• all r. (19)

for k 0, I, ... , r.

The solutions of (19) are characterized by the following theorem.

THEOREM II. A feasible point (.*, Xl","', x n ") for (19) yields an optimal
approximation for the problem ifand only ij'the origin oj'Rn can be written as
a convex combination of at most n I points from the r I sets

O. L.... r.

Next, consider the problem of Chebyshev approximation of a function and
its derivatives as developed by Laurent [15]. A generalized version of this
problem is

mini,mize ma~~rpum ) 1~1l Wk(tl! ,II 'YiePYi(t) f(;·i(t)I~,

where both {ePi(t)}~I~l and /(t) have continuous rth derivatives and each
Wilt) > 0 for all t E T. This can be rewritten as an optimization problem:

I'

minimize L T k
X,T 1.'0

s.t.

-Tic ~ Wk(t) [ f XieP?i(t)- /(I'\t)] ~ Tic

t",~l

for k = 0, ... , r. (20)

The solutions of (20) are characterized by the following theorem.
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THEOREM 12. A feasible point (T1"""" Tr''' x 1*,00., x n *) for (20) yields an
optimal approxirnation for the problem if and only if the origin of Rn can be
written as a convex combination of at most n + 1 points from the sets

where elc(t) = Wk(t)(L;t~l Xi1>(I;)(t) - fik)(t)). with at least one point from each

set X/ofor k = 0'00" r.

Finally, it should be observed that additional problems such as relative
error approximation with the objective

minimize maximum i L;~l X,1>i(t) - j(t)]
x lET I jet)]

can easily be handled by the techniques of this paper. Also, it should be
obvious that solutions to each of the problems posed in this section could be
characterized when additional constraints such as interpolation, one
sidedness, and monotonicity are present. This is not done here for the sake
of brevity.

6. CONSTRAINED L1 ApPROXIMATION

The problems treated in the previous sections have all been concerned with
U' approximation. The purpose of this section is to develop similar character
ization theorems for solutions of problems of V approximation. Although
the results are not developed in the fullest possible generality, the theorems
proved here are sufficient to illustrate the potential of this approach to
developing characterization theorems for general V approximation problems.

Throughout this section it shall be assumed that T = [a, b], a closed
bounded interval of the real line. Consider the following general V approxi
mation problem

b n Imin~mize { Itl Xi1>i(t) - J(t) dt

s.t.

n

(i) lk(t) ~ I Xi 1>(h)(t) ~ Uk(t),
i~l

all t E [a, bj,
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for Ie'~ I, ... , Ko ,

for k Ko I, ... , KI .

n

(iii) I xi1>~h)(tlr) c= YI ,
i=l

for Ie c= X] + J, ..• , K.

(21)

where the indices l/c arc chosen nonnegative II1tegers, for each k I, ... , Xu .
lit) c( 1I1r·(t) for all t E [a, b] with both h(t) and 1I/c(t) being continuous
functions on [a, b], each F E [a, b], and YH <. Y~" for Ie Ko " J,... , K1 .

In order to apply the theorems of Section J to problem (21), the following
lemma concerning differentiability is needed. Define the function

F(x) = ri£Xl1>i(f) - f(t)1 dl.
• 11. I i~-""'l ;

LEMMA 1. If2.-;~] X i1>i(t) - 1(t) has only ajinite number a/zeros in [a, b],
then F(x) is continuol/sly differentiable with

for i = 1,...,1/, where the function sgn is dej/ned by

\+~ if g(x) 0,
sgn( g(x)) = (f g(x) 0

1-. I (f g(x) O.

Proof Let t] ,... , tk be the roots of 2.-;'.1 x,1>;(t)- l(fl in [a. b]. For
sufficiently small E 0, define A [a E. t] ... E) U [tl .'. E, t~ _. E) U .,

U [tk + E, b - E] and B [a, b] n AC. Define

8 min ilf(t) - f x,1>,,(OI t - A( .O.
! i=l i

and observe that if 0 <: A1>;(tYI <: 8, [a, b] then,

sgn (J(t).- f X i1>i(t) - A1>i(t)) = sgn (J(t) - f X,1>i(f)) .
z=l i=l
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on A. Then for small enough I. (either positive or negative) it can be shown
that

LCPi(t) sgn (J(t) - ~l x;cp;(t)) dt - LI cp;(t)[ dt

F(.\;-- I.e;) - F(x) , j,b -I.,' ) (f( ) _~, .-I..()) d
I. T "n '/-'l~t sgn t t1 x,,/-,, t t

where ei is the unit vector in the ith component. Observe that the left-hand
side of this inequality is bounded below by -4kE II CPi(t)li[a,b] and that the
right-hand side is bounded by 4k E il cplt)li[a,b] . By choosing I. sufficiently
small, E > 0 can be made arbitrarily small, which proves that

?F(x) = l' F(x -I- '\e i ) - F(x) = _ rb
-1.,( ) (f( ) - ~ . b.()) I

r 1m \ ,/-" t sgn t 1... X,I I t It,
eXi ,1,f) 1\ '(l i~l

as desired. Q.E.D.
The following theorem characterizes the solutions of problem (21).

THEOREM 13. Assume that problem (21) satisfies either constraint
qualification 1 or 2. Then a point (Xl *, ... , x n*), feasible for problem (21) with
2::~=1 X;*CPi(t) - f(t) having only a finite number of zeros, solves (21) if and
only if there are integers 0 ~ So :s;; Sl ~ S :s;; n together with tq Eo [a, b] for
q c= 1, , so, 1 ~ kq ~ Ko for q = 1,... , so, Ko + 1 ~ k q ~ K1 for q =
Sf) + 1, , Sl and K1 + 1 ~ k q ~ K for q = Sl + 1, ... , s and real numbers
'\'1 + 0 such that

rP(x; t) sgn (J(t) - f x/cp;(t)) dt
a t=l

'''0 s

= I \pUkq)(X; t~ + I \p(h)(x; 'ikq)
q=l q=so+l

(22)

for all generalized polynomials P(x; t) = 2::~~1 xiCPlt) where pUlex; t) =
2::;=1 XiCP(j)(t) and where the sign of Aq is determined by

(i) for q = 1,... so,

n

,\q > 0 if I Xi * <p!jkq\t~ = Uk (1"),
i~l
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n\ °if''" . *-J.(Jk)( q) -I ()I\q < I L Xi 'f'i q t - Ie" t ,
i=l

(ii) for q = So + 1, ... , Sl ,

and the signs for Aq for q = Sl + I,... , S are indeterminant.

Proof The fact that the objective function F(x) is convex follows from the
triangle inequality. Thus, by Theorem 4 and Lemma I, (Xl *, ... , Xn *) solves
(21) if and only if

I n So

- r) ep,(t) sgn (J(t) - I xt epi(t)) dt -+ I Aqep~h,)(tq)
• a 'Ie,,! (}=1

s

+ I Aqep~jk)(lkq)= 0,
q=so+l

(23)

holds for each i = I, ... , n with the integers Si and parameters Aq defined as in
the theorem and

t'J E It E [a, b]1 I x/epihq)(t) == u,cCt) or l,cCt)j ,
l=l

for q = 1,... , So ,

for q = So + 1,..., Sl •

The conclusion follows directly from (23). Q. E.D.

Constraint qualification I holds for problem (21) if {ep;(t)}~~l is a Haar set
on [a, b], there are no derivatives in the constraints of (21), i.e., A == °for
k = I, ... , K, and fo(t) < uo(t) for all t E [a, b]. Thus, Theorem 13 applies
immediately to a wide variety of problems without being concerned whether
or not a constraint qualification is satisfied. Furthermore, for one-sided
approximation, say J(t) ? L~~l xi(Mt), Theorem 13 can be derived without
any condition on the roots of L~~l xi(Mt) - let). Thus, these results
generalize the characterization theorem previously developed by de Yore [6].



CHARACTERIZATION VIA OPTIMIZATION 75

We note that general LV approximation problems with I < p < co can be
handled in exactly the same manner as the D problem. Furthermore, much
more general forms of Lemma I can be given which would be less restrictive
in Theorem 13. However, the purpose of this paper has been to explain the
basic types of problems which can be treated by this approach rather than the
most general in each case.

7. CONCLUSIONS

The underlying theme throughout this paper has been that characterization
theorems for solutions of a wide variety of LV approximation problems can be
obtained in a simple and unified manner by using a mathematical optimization
approach. In addition to the unity it lends to the development of character
ization theorems, the mathematical programming approach is well-suited for
(i) development of efficient algorithms for obtaining best approximations by
using algorithms which solve the associated mathematical programming
problems, and (ii) development of error estimates for an approximation
problem by using the dual optimization problem which is always associated
with the original optimization formulation of the approximation problem.
Future papers will explore both of these aspects. Of particular interest is an
algorithm, closely related to the second algorithm of Remez, which solves
general optimization problems of the form (P) described in Section I [9].
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